A fractional order nonlinear dynamical model of interpersonal relationships
نویسندگان
چکیده
منابع مشابه
A Novel Numerical Approach for a Nonlinear Fractional Dynamical Model of Interpersonal and Romantic Relationships
In this paper, we propose a new numerical algorithm, namely q-homotopy analysis Sumudu transform method (q-HASTM), to obtain the approximate solution for the nonlinear fractional dynamical model of interpersonal and romantic relationships. The suggested algorithm examines the dynamics of love affairs between couples. The q-HASTM is a creative combination of Sumudu transform technique, q-homotop...
متن کاملModel Order Reduction of Nonlinear Dynamical Systems
Model Order Reduction of Nonlinear Dynamical Systems by Chenjie Gu Doctor of Philosophy in Electrical Engineering and Computer Science University of California, Berkeley Professor Jaijeet Roychowdhury, Chair Higher-level representations (macromodels, reduced-order models) abstract away unnecessary implementation details and model only important system properties such as functionality. This meth...
متن کاملFractional Order Dynamical Phenomena in a GA
This work addresses the fractional-order dynamics during the evolution of a GA, which generates a robot manipulator trajectory. In order to investigate the phenomena involved in the GA population evolution, the crossover is exposed to excitation perturbations and the corresponding fitness variations are evaluated. The input/output signals are studied revealing a fractional-order dynamic evoluti...
متن کاملStability analysis of fractional-order nonlinear Systems via Lyapunov method
In this paper, we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov method. To examine the obtained results, we employe the developed techniques on test examples.
متن کاملAnalogue Realization of Fractional-Order Dynamical Systems
As it results from many research works, the majority of real dynamical objects are fractional-order systems, although in some types of systems the order is very close to integer order. Application of fractional-order models is more adequate for the description and analysis of real dynamical systems than integer-order models, because their total entropy is greater than in integer-order models wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2012
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2012-189